Carbozinc 859EZ2 Part A #### **RESENE PAINTS AUSTRALIA** Version No: 3.8 Safety Data Sheet according to WHS and ADG requirements #### Chemwatch Hazard Alert Code: 2 Issue Date: **18/01/2018**Print Date: **27/04/2018**S.GHS.AUS.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Carbozinc 859EZ2 Part A | | |-------------------------------|--|--| | Synonyms | Not Available | | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | Other means of identification | Not Available | | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Part A of a two pack epoxy zinc coating #### Details of the supplier of the safety data sheet | Registered company name | RESENE PAINTS AUSTRALIA | |-------------------------|---| | Address | 7 Production Ave, Molendinar QLD 4214 Australia | | Telephone | +61 7 55126600 | | Fax | +61 7 55126697 | | Website | Not Available | | Email | Not Available | #### Emergency telephone number | Association / Organisation | Not Available | |-----------------------------------|---------------| | Emergency telephone numbers | 131126 | | Other emergency telephone numbers | Not Available | #### CHEMWATCH EMERGENCY RESPONSE | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | 1800 039 008 | 1800 039 008 | +612 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 #### **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture #### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | | |-------------------------------|---|--| | Classification ^[1] | Flammable Liquid Category 3, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Carcinogenicity Category 2, Acute Aquatic Hazard Category 1, Chronic Aquatic Hazard Category 1 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | | #### Label elements Hazard pictogram(s) SIGNAL WORD WARNING #### Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|---| | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H317 | May cause an allergic skin reaction. | | H351 | Suspected of causing cancer. | | H410 | Very toxic to aquatic life with long lasting effects. | ### Supplementary statement(s) Not Applicable Chemwatch: 9-94288 Version No: 3.8 ### Page 2 of 17 Carbozinc 859EZ2 Part A Issue Date: 18/01/2018 Print Date: 27/04/2018 #### Precautionary statement(s) Prevention | Obtain special instructions before use. | |---| | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | Keep container tightly closed. | | Wear protective gloves/protective clothing/eye protection/face protection. | | Use personal protective equipment as required. | | Ground/bond container and receiving equipment. | | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | Use only non-sparking tools. | | Take precautionary measures against static discharge. | | Avoid breathing mist/vapours/spray. | | Avoid release to the environment. | | Contaminated work clothing should not be allowed out of the workplace. | | | #### Precautionary statement(s) Response | P308+P313 | IF exposed or concerned: Get medical advice/attention. | | |----------------|--|--| | P362 | ake off contaminated clothing and wash before reuse. | | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P391 | Collect spillage. | | | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | #### Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | #### Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |------------|-----------|---| | 25036-25-3 | 1-10 | bisphenol A/ bisphenol A diglycidyl ether polymer | | 1330-20-7 | 1-10 | xylene | | 25068-38-6 | 1-10 | bisphenol A/ diglycidyl ether resin, liquid | | 7440-66-6 | 60-70 | zinc powder | | 123-86-4 | 1-10 | n-butyl acetate | | 68002-19-7 | <=1 | urea/ formaldehyde resin solution, butylated | #### **SECTION 4 FIRST AID MEASURES** | Description of first aid meas | ures | |-------------------------------|---| | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. For thermal burns: Decontaminate area around burn. Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. Use compresses if running water is not available. Cover with sterile non-adhesive bandage or clean cloth. Do NOT apply butter or ointments; this may cause infection. Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top two layers of skin) Cool the burn by immerse in cold running water for 10-15 minutes. Use compresses if running water is not available. | ▶ Do NOT apply ice as this may lower body temperature and cause further damage. Chemwatch: 9-94288 Page 3 of 17 Issue Date: 18/01/2018 Version No: 3.8 Print Date: 27/04/2018 #### Carbozinc 859EZ2 Part A ▶ Do NOT break blisters or apply butter or ointments; this may cause infection. ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): Lay the person flat. Elevate feet about 12 inches. ▶ Elevate burn area above heart level, if possible. Cover the person with coat or blanket. Seek medical assistance. For third-degree burns Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. Separate burned toes and fingers with dry, sterile dressings. ▶ Do not soak burn in water or apply ointments or butter; this may cause infection. To prevent shock see above For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway Have a person with a facial burn sit up. ▶ Check pulse and breathing to monitor for shock until emergency help arrives. ▶ If fumes, aerosols or combustion products are inhaled remove from contaminated area. Inhalation Other measures are usually unnecessary. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible
aspiration of vomitus. ed do NOT ind If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Ingestion Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid aiving milk or oils. Avoid giving alcohol. #### Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure. - Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever) - Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months. - ▶ Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects. - The general approach to treatment is recognition of the disease, supportive care and prevention of exposure. Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema. [Ellenhorn and Barceloux: Medical Toxicology] For acute or short term repeated exposures to xylene: - ► Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - $\blacktriangleright\,$ Pulmonary absorption is rapid with about 60-65% retained at rest. - ▶ Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time Comments Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift - ▶ Absorption of zinc compounds occurs in the small intestine. - ► The metal is heavily protein bound. - ► Elimination results primarily from faecal excretion. - The usual measures for decontamination (Ipecac Syrup, lavage, charcoal or cathartics) may be administered, although patients usually have sufficient vomiting not to require them. - CaNa2EDTA has been used successfully to normalise zinc levels and is the agent of choice. [Ellenhorn and Barceloux: Medical Toxicology] #### **SECTION 5 FIREFIGHTING MEASURES** #### Extinguishing media ▶ DO NOT use halogenated fire extinguishing agents. Metal dust fires need to be smothered with sand, inert dry powders. #### DO NOT USE WATER, CO2 or FOAM. - ▶ Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire. - ▶ Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas. - ► Chemical reaction with CO2 may produce flammable and explosive methane. - ▶ If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out. #### Special hazards arising from the substrate or mixture Fire Incompatibility - ► Reacts with acids producing flammable / explosive hydrogen (H2) gas - Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result Chemwatch: 9-94288 Page 4 of 17 Issue Date: 18/01/2018 Version No: 3.8 Print Date: 27/04/2018 #### Carbozinc 859EZ2 Part A · Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Fire Fighting • Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. DO NOT use water or foam as generation of explosive hydrogen may result With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are Metal powders, while generally regarded as non-combustible: May burn when metal is finely divided and energy input is high. May react explosively with water. May be ignited by friction, heat, sparks or flame. May **REIGNITE** after fire is extinguished. Will burn with intense heat. Note: Metal dust fires are slow moving but intense and difficult to extinguish. Fire/Explosion Hazard Containers may explode on heating. Dusts or fumes may form explosive mixtures with air. Gases generated in fire may be poisonous, corrosive or irritating. Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids. Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning. Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. HAZCHEM #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures #### **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. | |--------------|---| | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or
explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculitie. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** Safe handling #### Precautions for safe handling #### • Containers, even those that have been emptied, may contain explosive vapours. Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - Electrostatic discharge may be generated during pumping this may result in fire. - ▶ Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). - Avoid splash filling. Chemwatch: 9-94288 Page 5 of 17 Issue Date: 18/01/2018 Version No. 3.8 Print Date: 27/04/2018 Carbozinc 859EZ2 Part A ▶ Do NOT use compressed air for filling discharging or handling operations. Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area - Prevent concentration in hollows and sumps. - ► DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. DO NOT use plastic buckets - Earth all lines and equipment. - Use spark-free tools when handling. - Avoid contact with incompatible materials. - When handling, **DO NOT** eat, drink or smoke - Keep containers securely sealed when not in use - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ DO NOT allow clothing wet with material to stay in contact with skin - Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - Keep adsorbents for leaks and spills readily available. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - Storage tanks should be above ground and diked to hold entire contents. #### Conditions for safe storage, including any incompatibilities Other information - CARE: Packing of high density product in light weight metal or plastic packages may result in container collapse with product release - Heavy gauge metal packages / Heavy gauge metal drums - Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - Suitable container For materials with a viscosity of at least 2680 cSt. (23 deg. C) - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. - may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride - attack some plastics, rubber and coatings - may generate electrostatic charges on flow or agitation due to low conductivity. - Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - Aromatics can react exothermically with bases and with diazo compounds. - WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively. - The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive. - Avoid reaction with borohydrides or cvanoborohydrides - Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid. #### For alkyl aromatics: Storage incompatibility The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. - Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. - Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides - Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. - Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity - Microwave conditions give improved yields of the oxidation products. Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 Formaldehyde: - is a strong reducing agent - may polymerise in air unless properly inhibited (usually with methanol up to 15%) and stored at controlled temperatures - will polymerize with active organic material such as phenol - reacts violently with strong oxidisers, hydrogen peroxide, potassium permanganate, acrylonitrile, caustics (sodium hydroxide, yielding formic acid and flammable hydrogen), magnesium carbonate, nitromethane, nitrogen oxides (especially a elevated temperatures), peroxyformic acid - is incompatible with strong acids (hydrochloric acid forms carcinogenic bis(chloromethyl)ether*), amines, ammonia, aniline, bisulfides, gelatin, iodine, magnesite, phenol, some monomers, tannins, salts of copper, iron, silver. # Page 6 of 17 Carbozinc 859EZ2 Part A Issue Date: **18/01/2018**Print Date: **27/04/2018** ▶ acid catalysis can produce impurities: methylal, methyl formate Aqueous solutions of formaldehyde: - ▶ slowly oxidise in air to produce formic acid - attack carbon steel Concentrated solutions containing formaldehyde are: - unstable, both oxidising slowly to form formic acid and polymerising; in dilute aqueous solutions formaldehyde appears as monomeric hydrate (methylene glycol) the more concentrated the solution the more polyoxymethylene glycol occurs as oligomers and polymers
(methanol and amine-containing compounds inhibit polymer formation) - readily subject to polymerisation, at room temperature, in the presence of air and moisture, to form paraformaldehyde (8-100 units of formaldehyde), a solid mixture of linear polyoxymethylene glycols containing 90-99% formaldehyde; a cyclic trimer, trioxane (CH2O3), may also form Flammable and/or toxic gases are generated by the combination of aldehydes with azo, diazo compounds, dithiocarbamates, nitrides, and strong reducing agents *The empirical equation may be used to determine the concentration of bis(chloromethyl)ether (BCME) formed by reaction with HCl: log(BCME)ppb = -2.25 + 0.67• log(HCHO) ppm + 0.77• log(HCl)ppm Assume values for formaldehyde, in air, of 1 ppm and for HCl of 5 ppm, resulting BCME concentration, in air, would be 0.02 ppb. - ▶ Reacts slowly with water. - ► CAUTION contamination with moisture will liberate explosive hydrogen gas, causing pressure build up in sealed containers. - Reacts violently with caustic soda, other alkalies generating heat, highly flammable hydrogen gas. - ▶ If alkali is dry, heat generated may ignite hydrogen if alkali is in solution may cause violent foaming - Segregate from alcohol, water. #### Glycidyl ethers: - may form unstable peroxides on storage in air ,light, sunlight, UV light or other ionising radiation, trace metals inhibitor should be maintained at adequate levels - may polymerise in contact with heat, organic and inorganic free radical producing initiators - ▶ may polymerise with evolution of heat in contact with oxidisers, strong acids, bases and amines - react violently with strong oxidisers, permanganates, peroxides, acyl halides, alkalis, ammonium persulfate, bromine dioxide - ▶ attack some forms of plastics, coatings, and rubber Metals exhibit varying degrees of activity. Reaction is reduced in the massive form (sheet, rod, or drop), compared with finely divided forms. The less active metals will not burn in air but: - can react exothermically with oxidising acids to form noxious gases. - ► catalyse polymerisation and other reactions, particularly when finely divided - react with halogenated hydrocarbons (for example, copper dissolves when heated in carbon tetrachloride), sometimes forming explosive compounds. - Finely divided metal powders develop pyrophoricity when a critical specific surface area is exceeded; this is ascribed to high heat of oxide formation on exposure to air. - ▶ Safe handling is possible in relatively low concentrations of oxygen in an inert gas. - Several pyrophoric metals, stored in glass bottles have ignited when the container is broken on impact. Storage of these materials moist and in metal containers is recommended. - ▶ The reaction residues from various metal syntheses (involving vacuum evaporation and co-deposition with a ligand) are often pyrophoric. Factors influencing the pyrophoricity of metals are particle size, presence of moisture, nature of the surface of the particle, heat of formation of the oxide, or nitride, mass, hydrogen content, stress, purity and presence of oxide, among others. - Many metals in elemental form react exothermically with compounds having active hydrogen atoms (such as acids and water) to form flammable hydrogen gas and caustic products. - Elemental metals may react with azo/diazo compounds to form explosive products. - ▶ Some elemental metals form explosive products with halogenated hydrocarbons. X — Must not be stored together May be stored together with specific preventions May be stored together #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### Control parameters #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|-----------------|-----------------------------|---------------------|---------------------|---------------|---------------| | Australia Exposure Standards | xylene | Xylene (o-, m-, p- isomers) | 350 mg/m3 / 80 ppm | 655 mg/m3 / 150 ppm | Not Available | Not Available | | Australia Exposure Standards | n-butyl acetate | n-Butyl acetate | 713 mg/m3 / 150 ppm | 950 mg/m3 / 200 ppm | Not Available | Not Available | #### EMERGENCY LIMITS | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---|---|---------------|---------------|---------------| | bisphenol A/ bisphenol A diglycidyl ether polymer | Epoxy resin; (Bisphenol A-Bisphenol A diglycidyl ether polymer) | 6 mg/m3 | 66 mg/m3 | 400 mg/m3 | | xylene | Xylenes | Not Available | Not Available | Not Available | | bisphenol A/ diglycidyl ether resin, liquid | Epoxy resin includes EPON 1001, 1007, 820, ERL-2795 | 90 mg/m3 | 990 mg/m3 | 5,900 mg/m3 | | zinc powder | Zinc | 6 mg/m3 | 21 mg/m3 | 120 mg/m3 | | n-butyl acetate | Butyl acetate, n- | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |---|-----------------|---------------| | bisphenol A/ bisphenol A diglycidyl ether polymer | Not Available | Not Available | | xylene | 900 ppm | Not Available | | bisphenol A/ diglycidyl ether resin, liquid | Not Available | Not Available | | zinc powder | Not Available | Not Available | | n-butyl acetate | 1,700 [LEL] ppm | Not Available | Chemwatch: 9-94288 Version No: 3.8 ### Page 7 of 17 Carbozinc 859EZ2 Part A Issue Date: 18/01/2018 Print Date: 27/04/2018 urea/ formaldehyde resin solution, Not Available Not Available #### **Exposure controls** Metal dusts must be collected at the source of generation as they are potentially explosive. - Avoid ignition sources. - Good housekeeping practices must be maintained. - Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions. - Do not use compressed air to remove settled materials from floors, beams or equipment - Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation. - Use non-sparking handling equipment, tools and natural bristle brushes. Cover and reseal partially empty containers. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations. - Do not allow chips, fines or dusts to contact water, particularly in enclosed areas. - Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in the form of metal oxides, to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium. - > Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is possible. - Wet scrubbers are preferable to dry dust collectors. - Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors. - Figure Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted - Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. - Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuum and electrostatic precipitators must not be used, unless specifically approved for use with flammable/ explosive dusts #### Appropriate engineering controls Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |--|------------------------------| | welding, brazing fumes (released at relatively low velocity into moderately still air) | 0.5-1.0 m/s (100-200 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection #### Eye and face protection - Safety glasses with side shields - Chemical goggles #### Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of
chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: #### Hands/feet protection - frequency and duration of contact, - chemical resistance of glove material, glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. #### Carbozinc 859EZ2 Part A Issue Date: 18/01/2018 Print Date: 27/04/2018 Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ▶ When handling liquid-grade epoxy resins wear chemically protective gloves (e.g nitrile or nitrile-butatoluene rubber), boots and aprons. - DO NOT use cotton or leather (which absorb and concentrate the resin), polyvinyl chloride, rubber or polyethylene gloves (which absorb the resin) - DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior - ▶ Protective gloves eg. Leather gloves or gloves with Leather facing #### **Body protection** #### See Other protection below - Overalls - PVC Apron. - PVC protective suit may be required if exposure severe. - Evewash unit. - Ensure there is ready access to a safety shower #### Other protection - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. ### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: Carbozinc 859EZ2 Part A | Material | CPI | |-------------------|-----| | TEFLON | Α | | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | VITON | С | | VITON/BUTYL | С | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required
Minimum
Protection
Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---|-------------------------|-------------------------|---------------------------| | up to 10 x
ES | AX-AUS /
Class 1 | - | AX-PAPR-AUS
/ Class 1 | | up to 50 x
ES | Air-line* | - | - | | up to 100 x
ES | - | AX-3 | - | | 100+ x ES | - | Air-line** | - | * - Continuous-flow; ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) If inhalation risk above the TLV exists, wear approved dust respirator. Use respirators with protection factors appropriate for the exposure level - Up to 5 X TLV, use valveless mask type; up to 10 X TLV, use 1/2 mask dust respirator - ▶ Up to 50 X TLV, use full face dust respirator or demand type C air supplied respirator - ▶ Up to 500 X TLV, use powered air-purifying dust respirator or a Type C pressure demand supplied-air respirator - Over 500 X TLV wear full-face self-contained breathing apparatus with positive pressure mode or a combination respirator with a Type C positive pressure supplied-air full-face respirator and an auxiliary self-contained breathing apparatus operated in pressure demand or other positive pressure mode Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required
minimum
protection
factor | Maximum
gas/vapour
concentration
present in air
p.p.m. (by
volume) | Half-face
Respirator | Full-Face
Respirator | |---|---|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS /
Class 1 | - | #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | e Coloured with Characteristic Odour | | | |--|--------------------------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 3.00 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 425 | | pH
(as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 13333.33 | | Initial boiling point and boiling range (°C) | 129 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 26 | Taste | Not Available | | Evaporation rate | 1.0 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 9.3 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 2.1 | Volatile Component (%vol) | 9 | | Vapour pressure (kPa) | 1.1 | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | 3.8 | VOC g/L | 109.79 | #### SECTION 10 STABILITY AND REACTIVITY | Reactivity | See section 7 | | |------------------------------------|--|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | | Possibility of hazardous reactions | See section 7 | | | Conditions to avoid | See section 7 | | | Incompatible materials | aterials See section 7 | | | Hazardous decomposition products | See section 5 | | #### **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects | | or irritation o | |---------|-----------------| | | Directives us | | | practice requ | | Inhaled | suitable con | | | Not normally | | | The inhalation | | | | The material is not thought to produce adverse health effects of the respiratory tract (as classified by EC sing animal models). Nevertheless, good hygiene juires that exposure be kept to a minimum and the ntrol measures be used in an occupational setting ly a hazard due to non-volatile nature of product on of small particles of metal oxide results in sudden thirst, a sweet, metallic foul taste, throat irritation, Carbozinc 859EZ2 Part A Issue Date: 18/01/2018 Print Date: 27/04/2018 Ingestion | up to 50 | 1000 | - | A-AUS /
Class 1 | |-----------|-------|-----------|--------------------| | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | | up to 100 | 10000 | - | A-3 | | 100+ | | - | Airline** | - * Continuous Flow - ** Continuous-flow or positive pressure demand. A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C) | cough, dry mucous membranes, tiredness and general | |--| | unwellness. Headache, nausea and vomiting, fever or chills, | | restlessness, sweating, diarrhoea, excessive urination and | | prostration may also occur. | | Headache, fatigue, tiredness, irritability and digestive | | disturbances (nausea, loss of appetite and bloating) are the | | most common symptoms of xylene overexposure. Injury to t | heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant Animal testing showed that a single dose of bisphenol A diglycidyl ether (BADGE) given by mouth, caused an increase in immature Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of lack of corroborating animal or human evidence. The material may accentuate any pre-existing dermatitis condition Bisphenol A diglycidyl ether (BADGE) may produce contact dermati characterized by redness and swelling, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation when applied daily for 4 hours over 20 days. Open cuts, abraded or irritated skin should not be exposed to this material Skin Contact Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. There is some evidence to suggest that the material may cause mild but significant inflammation of the skin either following direct contac after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blisterin This material can cause eve irritation and damage in some persons Bisphenol A diglycidyl ethers (BADGEs) produce a sensitization dermatitis (skin inflammation) characterized by eczema with blisters and papules, with considerable itching of the back of the hand. This r persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. The dermatitis may last longer following each exposure, but is unlikely to become more intense. Lower molec weight species produce sensitization more readily. Animal testing his shown an increase in the development of some tumours. For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions. Chronic Exposure to some reactive diluents (notably, neopentylglycol diglycid ether, CAS RN: 17557-23-2) has caused cancer in some animal Glycidyl ethers can cause genetic damage and cancer. Women exposed to xylene in the first 3 months of pregnancy showed slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of gene toxicity. All workers involved in the production and use of zeolite-containing products are potentially exposed to erionite, a fibrous form of zeolite, which is mined with deposits of other zeolites. Animal testing showe that injection of erionite through the abdominal or pleural cavity caus scarring and cancers. | | , | | |--|---|--------------------------------------| | Carbozinc 859EZ2 Part A | TOXICITY | IRRITATION | | Carbozine 039EZZ Part A | Not Available | Not Available | | | | | | | TOXICITY | IRRITATION | | bisphenol A/ bisphenol A
diglycidyl ether polymer | dermal (rat) LD50: >2000
mg/kg ^[2] | Not Available | | | Oral (rat) LD50: >2000 mg/kg ^[2] | | | | | | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (human): 200 ppm irritant | | xylene | Inhalation (rat) LC50: 4994.295
mg/l/4h ^[2] | Eye (rabbit): 5 mg/24h SEVER | | | Oral (rat) LD50: 4300 mg/kg ^[2] | Eye (rabbit): 87 mg mild | | | | Skin (rabbit):500 mg/24h
moderate | | | | | | bisphenol A/ diglycidyl ether | TOXICITY | IRRITATION | | resin, liquid | | | Chemwatch: 9-94288 Page 10 of 17 Version No: 3.8 Issue Date: 18/01/2018 Print Date: 27/04/2018 Carbozinc 859EZ2 Part A dermal (rat) LD50: >1200 mg/kg^[2] Eye (rabbit): 100mg - Mild Oral (rat) LD50: >1000 mg/kg^[2] TOXICITY IRRITATION Dermal (rabbit) LD50: 1130 mg/kg^[2] Not Available zinc powder Oral (rat) LD50: >2000 mg/kg^[1] | | TOXICITY | IRRITATION | |--|--|--| | | Dermal (rabbit) LD50: 3200 mg/kg ^[2] | Eye (human): 300 mg | | n-butyl acetate | Inhalation (rat) LC50: 1.802
mg/l4 h ^[1] | Eye (rabbit): 20 mg
(open)-SEVERE | | | Oral (rat) LD50: 10768 mg/kg ^[2] | Eye (rabbit): 20 mg/24h -
moderate | | | | Skin (rabbit): 500 mg/24h-
moderate | | | | | | urea/ formaldehyde resin | TOXICITY | IRRITATION | | solution, butylated | Not Available | Not Available | | Legend: | Value obtained from Europe I
Acute toxicity 2.* Value obtaine
Unless otherwise specified data
Register of Toxic Effect of chem | d from manufacturer's SDS.
a extracted from RTECS - | | BISPHENOL A/ BISPHENOL
A DIGLYCIDYL ETHER
POLYMER | after exposure to the material er non-allergic condition known as syndrome (RADS) which can oc of highly irritating compound. M RADS include the absence of pronon-atopic individual, with suddasthma-like symptoms within m documented exposure to the irridiagnosis of RADS include a refunction tests, moderate to sever methacholine challenge testing, lymphocytic inflammation, with asthma) following an irritating is disorder with rates related to the of exposure to the irritating
subindustrial bronchitis is a disorde exposure due to high concentra (often particles) and is complete ceases. The disorder is characte cough and mucus production. *Hexion MSDS Epikote 1001 | reactive airways dysfunction
cur after exposure to high lew
Main criteria for diagnosing
evious airways disease in a
den onset of persistent
inutes to hours of a
ritant. Other criteria for
versible airflow pattern on lun
ere bronchial hyperreactivity of
and the lack of minimal
out eosinophilia. RADS (or
nhalation is an infrequent
e concentration of and durati
istance. On the other hand,
er that occurs as a result of
ations of irritating substance
ely reversible after exposure | | BISPHENOL A/
DIGLYCIDYL ETHER
RESIN, LIQUID | The substance is classified by IAR(NOT classifiable as to its carcinoge Evidence of carcinogenicity may be testing. Foetoxicity has been observed in al NOEL 180 mg/kg (teratogenicity; N | enicity to humans.
e inadequate or limited in animal
nimal studies Oral (rabbit, female | | ZINC POWDER | Inhalation (human) TCLo: 124 mg/n
(human):0.3mg/3DaysInt. mild | n3/50min. Skin | | BISPHENOL A/ BISPHENOL
A DIGLYCIDYL ETHER
POLYMER & BISPHENOL A/
DIGLYCIDYL ETHER
RESIN, LIQUID & UREA/
FORMALDEHYDE RESIN
SOLUTION, BUTYLATED | The following information refers to may not be specific to this product. Contact allergies quickly manifest it more rarely as urticaria or Quincke' contact eczema involves a cell-med reaction of the delayed type. Other urticaria, involve antibody-mediated significance of the contact allergen sensitisation potential: the distributio opportunities for contact with it are a sensitising substance which is wide important allergen than one with st which few individuals come into cor substances are noteworthy if they prore than 1% of the persons tested | hemselves as contact eczema, is oedema. The pathogenesis of liated (T lymphocytes) immune allergic skin reactions, e.g. conta immune reactions. The is not simply determined by its on of the substance and the equally important. A weakly sly distributed can be a more ronger sensitising potential with ttact. From a clinical point of view produce an allergic test reaction in | | BISPHENOL A/ BISPHENOL
A DIGLYCIDYL ETHER
POLYMER & UREA/
FORMALDEHYDE RESIN
SOLUTION, BUTYLATED | No significant acute toxicological d | ata identified in literature search | | | | Continued | Chemwatch: 9-94288 Page 11 of 17 Version No: 3.8 Carbozinc 859EZ2 Part A Issue Date: 18/01/2018 Print Date: 27/04/2018 The chemical structure of hydroxylated diphenylalkanes or bisphenol consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics Bisphenol A (BPA) and some related compounds exhibit pestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibite significant thyroid hormonal activity towards rat pituitary cell line GH which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show su **BISPHENOL A/ BISPHENOL** A DIGLYCIDYL ETHER POLYMER & BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID activity. Results suggest that the 4-hydroxyl group of the A-phenyl rir and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the pheny rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis a secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angi configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor. **BISPHENOL A/ BISPHENOL** A DIGLYCIDYL ETHER POLYMER & BISPHENOL A/ DIGLYCIDYL ETHER RESIN. LIQUID Animal testing over 13 weeks showed bisphenol A diglycidyl ether (BADGE) caused mild to moderate, chronic, inflammation of the skir Reproductive and Developmental Toxicity: Animal testing showed BADGE given over several months caused reduction in body weight had no reproductive effects. Cancer-causing potential: It has been concluded that bisphenol A diglycidyl ether cannot be classified with respect to its cancer-causi potential in humans. Genetic toxicity: Laboratory tests on genetic toxicity of BADGE have far been negative. Immunotoxicity: Animal testing suggests regular injections of diluter BADGE may result in sensitization. Consumer exposure: Comsumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Testing has not found any evidence of hormonal disruption N-BUTYL ACETATE & UREA/ FORMAL DEHYDE RESIN SOLUTION, BUTYLATED The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritar may produce conjunctivitis. N-BUTYL ACETATE & UREA/ FORMALDEHYDE **RESIN SOLUTION,** BUTYLATED The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. | Acute Toxicity | 0 | Carcinogenicity | ~ | |--------------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ~ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | | | Respiratory or Skin
sensitisation | ~ | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | X - Data available but does not fill the criteria for classification Data available to make classification Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### Toxicity | Carbozinc 859EZ2 Part A | ENDPOINT | TEST
DURATION
(HR) | SPECIES | VALUE | SOUR | |--------------------------|------------------|--------------------------|------------------|------------------|----------------| | | Not
Available | Not
Available | Not
Available | Not
Available | Not
Availab | | | | | | | | | bisphenol A/ bisphenol A | ENDPOINT | TEST
DURATION
(HR) | SPECIES | VALUE | SOUR | | diglycidyl ether polymer | Not
Available | Not Available | Not
Available | Not
Available | Not
Availab | | | | | | | | | | ENDPOINT | TEST
DURATION
(HR) | SPECIES | VALUE | SOUR | | xylene | LC50 | 96 | Fish | 2.6mg/L | 2 | | | EC50 | 48 | Crustacea | >3.4mg/L | 2 | Chemwatch: 9-94288 Page 12 of 17 Issue Date: 18/01/2018 Version No: 3.8 Print Date: 27/04/2018 Carbozinc 859EZ2 Part A | | EC50 | 72 | Algae or other aquatic plants Algae or other aquatic plants | | 4.6mg/L
0.44mg/L | 2 | |---|--|--|--|---------------------------------|---|--| | | ENDPOINT | TEST
DURATION
(HR) | SPECIES | 5 | VALUE | SOURC | | | LC50 | 96 | Fish | | 1.2mg/L | 2 | | bisphenol A/ diglycidyl ether
resin, liquid | EC50 | 72 | Algae or other aquatic plants | | 9.4mg/L | 2 | | | NOEC | 72 | Algae or other aquatic plants | | 2.4mg/L | 2 | | | | | | | | | | | ENDPOINT | TEST
DURATION
(HR) | SPECIES | VA | LUE | SOURC | | | LC50 | 96 | Fish | 0.0 | 0272mg/L | 4 | | | EC50 | 48 | Crustacea | 0.0 | 4mg/L | 5 | | zinc powder | EC50 | 72 | Algae or
other
aquatic
plants | 0.1 | 06mg/L | 4 | | | BCF | 360 | Algae or
other
aquatic
plants | 9m | ıg/L | 4 | | | NOEC | 336 | Algae or
other
aquatic
plants | 0.0 | 0075mg/L | 4 | | | | | | | | | | | ENDPOINT | TEST
DURATION
(HR) | SPECIES | ES VALUE | | SOURC | | | LC50 | 96 | Fish | 18 | Bmg/L | 4 | | | EC50 | 48 | Crustacea | = | 32mg/L | 1 | | n-butyl acetate | EC50 | 72 | Algae or other aquatic plants | =6 | 674.7mg/L | 1 | | | EC0 | 192 | Algae or other aquatic plants | =2 | 21mg/L | 1 | | | | | | | | | | urea/ formaldehyde resin
solution, butylated | ENDPOINT | TEST
DURATION
(HR) | SPECIES | 6 | VALUE | SOURC | | Jointon, butylateu | Not
Available | Not Available | Not
Available | | Not
Available | Not
Availabl | | Legend: | Registered S
Toxicity 3. EF
(Estimated) 4
5. ECETOC A | m 1. IUCLID T
tubstances - E
PIWIN Suite V3
I. US EPA, Eco
quatic Hazard
ation Data 7. Il | cotoxicolog
3.12 (QSAR)
otox databas
Assessmer | ical
- Ac
se - A
nt Da | Information
quatic Toxion
Aquatic Toxion
ata 6. NITE | on - Aqua
icity Data
exicity Da
(Japan) | Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-water: Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For Metal: Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing
solubilities. Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaker Chemwatch: **9-94288** Page **13** of **17** Version No: 3.8 Carbozine 859EZ2 Part A Page 13 of 17 Issue Date: 18/01/2018 Print Date: 27/04/2018 by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Onc released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic specie may bind to dissolved ligands or sorb to solid particles in water. Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects. For Aromatic Substances Series: Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs. Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapoure highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthroene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight at at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For bisphenol A and related bisphenols: Environmental fate: Biodegradability (28 d) 89% - Easily biodegradable Bioconcentration factor (BCF) 7.8 mg/l Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substanc by metabolic products Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Anr XIII As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminour plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, "initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater." However, a study conducted in the Uniter States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants. Ecotoxicity: Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish 144 d); 0.064 mg/l (saltwater fish 164 d) Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d) Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d) Freshwater algae (96 h): 2.73 mg/l Marine water algae (96 h): 1.1 mg/l Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms. Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-relat effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ug/L to 1 mg/L A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations. A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas. Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane;(BPA) A variety of BPs were examined for their acute toxicity against Daphn magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, a it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxydiphenyl)sulfone) and bis(4-hydroxyphenyl)sulfide) showed oestrogenic activity. Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteri. have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbo in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl)methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisr under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation BPF does exist in the natural ecosystem. Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased w increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF The effect of pH value on the BPF photodegradation was also important. #### For Xylenes $\label{eq:condition} \begin{tabular}{l} $\log \ Koc: 2.05-3.08; \ Koc: 25.4-204; \ Half-life (hr) \ air: 0.24-42; \ Half-life (hr) \ H2O \ surface \ water: 24-672 \ Half-life (hr) \ H2O \ surface \ water: 24-672 \ Half-life (hr) \ H2O \ surface \ water: 24-672 \ Half-life (hr) \ H2O \ surface \ water: 24-672 \ Half-life (hr) \ H2O \ surface \ Water \ H2O H2$ Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to deper on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into othe less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years. Chemwatch: **9-94288** Page **14** of **17** Version No: 3.8 Carbozinc 859EZ2 Part A Page 14 of 17 Issue Date: 18/01/2018 Print Date: 27/04/2018 Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in 1 air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the productior of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro 3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, 6-dimethylphenol, 6-dimethylpheno Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatil from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in t abiotic degradation of p-xylene, p-xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at let at sites where the concentration might have been quite high. Ecotoxicity:
Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L. Environmental Fate: Formaldehyde is common in the environment as a contaminant of smoke and as photochemical smog. Concentrated solutions containing formaldehyde are unstable and oxidize slowly. the presence of air and moisture, polymerization takes place readily in concentrated solutions at room temperature to form paraformaldehyde. Atmospheric Fate: In the atmosphere, formaldehyde both photolysis and reacts with reactive free radics (primarily hydroxyl radicals). Reaction with nitrate radicals, insignificant during the day, may be an important removal process at night. Air Quality Standards: <0.1 mg/m3 as a 30 min. average, indoor air non-industrial buildings (WHO guideline). Aquatic Fate: Due to its solubility, formaldehyde will efficiently transfer to rain and surface water and will biodegrade to low concentrations within days. Adsorption to sediment and volatilization are not expected be significant routes of biodegradation. Drinking Water Standard: Formaldehyde: 900 ug/L. (WHO guideline). Terrestrial Fate: In soil, aqueous solutions of formaldehyde leach through the soil; at high concentratio adsorption to clay minerals may occur. Although biodegradable under both aerobic and anaerobic conditions the fate of formaldehyde in soil is unclear. Ecotoxicity: Formaldehyde does not bioconcentrate in the food chain. **DO NOT** discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|-----------------------------|-----------------------------| | ingreatent | Persistence. Water/Son | reisisterice. All | | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | bisphenol A/
diglycidyl ether
resin, liquid | HIGH | HIGH | | n-butyl acetate | LOW | LOW | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---|-----------------------| | xylene | MEDIUM (BCF = 740) | | bisphenol A/
diglycidyl ether
resin, liquid | LOW (LogKOW = 2.6835) | | n-butyl acetate | LOW (BCF = 14) | #### Mobility in soil | Ingredient | Mobility | |---|-------------------| | bisphenol A/
diglycidyl ether
resin, liquid | LOW (KOC = 51.43) | | n-butyl acetate | LOW (KOC = 20.86) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Product / Packaging disposal - Containers may still present a chemical hazard/ danger whempty. - Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure residuals do not remain or if the container cannot be use store the same product, then puncture containers, to pre re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and obsernotices pertaining to the product. Legislation addressing waste disposal requirements may diffe by country, state and/ or territory. Each user must refer to law: operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user shou investigate: - ► Reduction - Reuse - ▶ Recycling Chemwatch: **9-94288** Page **15** of **17** Version No: 3.8 Carbozinc 859EZ2 Part A Issue Date: **18/01/2018**Print Date: **27/04/2018** #### Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf I considerations should also be applied in making decisions of this type. Note that properties of a material may change in use and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equip to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws regulations and these should be considered first. - Where in doubt contact the responsible authority. - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult lor regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to a chemical and / or pharmaceutical wastes or Incineration in licensed apparatus (after admixture with suitable combus material). - Decontaminate empty containers. Observe all label safegu until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** #### Labels Required Marine Pollutant HAZCHEM •3Y #### Land transport (ADG) | | UN number | 1263 | | | | |----------------------|------------------------------|--|--|--|--| | | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnist liquid filler and liquid lacquer base) or PAINT RELATED MAT (including paint thinning or reducing compound) | | | | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | | | | Packing group | III | | | | | Environmental hazard | | Environmentally hazardous | | | | | | Special precautions for user | Special provisions 163 223 367 Limited quantity 5 L | | | | #### Air transport (ICAO-IATA / DGR) | | UN number | 1263 | 1263 | | | |--|------------------------------|--|---------------------------|-----------|----------------| | | UN proper shipping name | Paint related material (including paint thinning or reducing compounds); Paint (including paint, lacquer, enamel, stain, shellar varnish, polish, liquid filler and liquid lacquer base) | | | 0 | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | 3
Not Applicable
3L | | | | | Packing group | III | | | | | | Environmental hazard | Environmentally hazardous | | | | | | | Special provisions | | | A3 A72
A192 | | | | Cargo Only Packing Instructions | | 366 | | | | Special procautions for user | Cargo Only Maximum Qty / Pack | | 220 L | | | | Special precautions for user | Passenger and Cargo Packing Instructions | | tions | 355 | | | | Passenger and Cargo Maximum Qty / Pack | | 60 L | | | | | Passenger and Carg | o Limited Quantity | / Packing | Y344 | | | | | | | | Chemwatch: 9-94288 Page 16 of 17 Version No: 3.8 Carbozinc 859EZ2 Part A 6 of 17 Issue Date: 18/01/2018 Print Date: 27/04/2018 Passenger and Cargo Limited Maximum Qty / Pack 10 L Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | | | |------------------------------|--|--|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, poliquid filler and liquid lacquer base) or PAINT RELATED MATERI (including paint thinning or reducing compound) | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Marine Pollutant | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | | | Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture BISPHENOL A/ BISPHENOL A DIGLYCIDYL ETHER POLYMER(25036-25-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) #### XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Part 2, Section Seven - Appendix I Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$ Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\ensuremath{\mathbf{6}}$ Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $7\,$ International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs # BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID(25068-38-6) IS FOUND ON THE FOLLOW REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 #### ZINC POWDER(7440-66-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) #### N-BUTYL ACETATE(123-86-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Chemical Information System
(HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) # UREA/ FORMALDEHYDE RESIN SOLUTION, BUTYLATED(68002-19-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) | National
Inventory | Status | |-----------------------|--------| | Australia - AICS | Υ | | Canada - DSL | Υ | Chemwatch: 9-94288 Page 17 of 17 Issue Date: 18/01/2018 Version No: 3.8 Print Date: 27/04/2018 #### Carbozinc 859EZ2 Part A | Canada - NDSL | N (xylene; n-butyl acetate; bisphenol A/ diglycidyl ether resin, liquid; bisphenol A/ bisphenol A diglycidyl ether polymer; urea/ formaldehyde resin solution, butylated; zinc powder) | |----------------------------------|--| | China - IECSC | Υ | | Europe - EINEC /
ELINCS / NLP | N (bisphenol A/ bisphenol A diglycidyl ether polymer) | | Japan - ENCS | N (bisphenol A/ diglycidyl ether resin, liquid; bisphenol A/ bisphenol A diglycidyl ether polymer; urea/ formaldehyde resin solution, butylated; zinc powder) | | Korea - KECI | Υ | | New Zealand -
NZIoC | Y | | Philippines -
PICCS | Y | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are no exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** | Revision Date | 18/01/2018 | |---------------|------------| | Initial Date | 18/01/2018 | #### Other information #### Ingredients with multiple cas numbers | Name | CAS No | |---|------------------------| | bisphenol A/
diglycidyl ether
resin, liquid | 25068-38-6, 25085-99-8 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average ${\tt PC-STEL: Permissible \ Concentration-Short \ Term \ Exposure \ Limit}$ IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch. #### Carbozinc 859EZ2 Part B #### **RESENE PAINTS AUSTRALIA** Version No: **6.17**Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **18/01/2018** Print Date: **27/04/2018** S.GHS.AUS.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Carbozinc 859EZ2 Part B | |-------------------------------|--| | Synonyms | Not Available | | Proper shipping name | PAINT, FLAMMABLE, CORROSIVE (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL, FLAMMABLE, CORROSIVE (including paint thinning or reducing compound) | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Part B of a two pack epoxy zinc coating #### Details of the supplier of the safety data sheet | Registered company name | RESENE PAINTS AUSTRALIA | |-------------------------|---| | Address | 7 Production Ave, Molendinar QLD 4214 Australia | | Telephone | +61 7 55126600 | | Fax | +61 7 55126697 | | Website | Not Available | | Email | Not Available | | | | #### Emergency telephone number | Association / Organisation | Not Available | |-----------------------------------|---------------| | Emergency telephone numbers | 131126 | | Other emergency telephone numbers | Not Available | #### CHEMWATCH EMERGENCY RESPONSE | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | 1800 039 008 | 1800 039 008 | +612 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 #### **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture ### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | |-------------------------------|--| | Classification ^[1] | Flammable Liquid Category 3, Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 1B, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Carcinogenicity Category 2, Reproductive Toxicity Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Aspiration Hazard Category 1, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | #### Label elements Hazard pictogram(s) DANGER #### Hazard statement(s) | ······································ | | |--|-------------------------------| | H226 | Flammable liquid and vapour. | | H302 | Harmful if swallowed. | | H312 | Harmful in contact with skin. | Chemwatch: 9-94293 Page 2 of 18 Version No: 6.17 #### Carbozinc 859EZ2 Part B | H332 | Harmful if inhaled. | |-------|--| | H314 | Causes severe skin burns and eye damage. | | H317 | May cause an allergic skin reaction. | | H351 | Suspected of causing cancer. | | H361d | Suspected of damaging the unborn child. | | H335 | May cause respiratory irritation. | | H336 | May cause drowsiness or dizziness. | | H373 | May cause damage to organs through prolonged or repeated exposure. | | H304 | May be fatal if swallowed and enters airways. | | H402 | Harmful to aquatic life. | | H411 | Toxic to aquatic life with long lasting effects. | #### Supplementary statement(s) Not Applicable #### Precautionary statement(s) Prevention | , | | | |------|---|--| | P201 | Obtain special instructions before use. | | | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | | P260 | Do not breathe dust/fume/gas/mist/vapours/spray. | | | P271 | Use in a well-ventilated area. | | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | | P281 | Use personal protective equipment as required. | | | P240 | Ground/bond container and receiving equipment. | | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | P242 | Use only non-sparking tools. | | | P243 | Take precautionary measures against static discharge. | | | P270 | Do not eat, drink or smoke when using this product. | | | P273 | Avoid release to the environment. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | #### Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. | |----------------|--| | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P308+P313 | IF exposed or concerned: Get medical advice/attention. | | P363 | Wash contaminated clothing before reuse. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P391 | Collect spillage. | | P301+P312 | IF SWALLOWED: Call a POISON CENTER or doctor/physician
if you feel unwell. | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | ### Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|--| | P405 | Store locked up. | #### Precautionary statement(s) Disposal Dispose of contents/container in accordance with local regulations. #### SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS ### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |-------------|-----------|---| | 135108-88-2 | 10-20 | formaldehyde/ benzenamine, hydrogenated | | 100-51-6 | 1-10 | benzyl alcohol | | 140-31-8 | 1-10 | N-aminoethylpiperazine | Issue Date: 18/01/2018 Print Date: 27/04/2018 Chemwatch: 9-94293 Page 3 of 18 Version No: 6.17 #### Carbozinc 859EZ2 Part B 1761-71-3 4,4'-methylenebis(cyclohexylamine) 90-72-2 1-10 2,4,6-tris[(dimethylamino)methyl]phenol 108-88-3 20-30 toluene 1330-20-7 30-40 xylene #### **SECTION 4 FIRST AID MEASURES** #### Description of first aid measures #### Eye Contact **Skin Contact** - Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - Transport to hospital or doctor without delay. - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. #### If skin or hair contact occurs: - ▶ Immediately flush body and clothes with large amounts of water, using safety shower if available. - Quickly remove all contaminated clothing, including footwear, - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. - ► Transport to hospital, or doctor #### For thermal burns: - Decontaminate area around burn. - Consider the use of cold packs and topical antibiotics. #### For first-degree burns (affecting top layer of skin) - ▶ Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. - Use compresses if running water is not available. - Cover with sterile non-adhesive bandage or clean cloth - Do NOT apply butter or ointments; this may cause infection. - Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. #### For second-degree burns (affecting top two layers of skin) - Cool the burn by immerse in cold running water for 10-15 minutes. - Use compresses if running water is not available. - Do NOT apply ice as this may lower body temperature and cause further damage. Do NOT break blisters or apply butter or ointments; this may cause infection. - ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. #### To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): - ▶ Lay the person flat - ► Elevate feet about 12 inches. - Elevate burn area above heart level, if possible. - Cover the person with coat or blanket. - Seek medical assistance. ## For third-degree burns Seek immediate medical or emergency assistance. #### In the mean time: - Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. - Separate burned toes and fingers with dry, sterile dressings. - Do not soak burn in water or apply ointments or butter; this may cause infection. - To prevent shock see above. - For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. - Have a person with a facial burn sit up. - ▶ Check pulse and breathing to monitor for shock until emergency help arrives. - If fumes or combustion products are inhaled remove from contaminated area. - Lav patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary #### Inhalation - Transport to hospital, or doctor, without delay. ▶ Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. - ► Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). - As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. - ▶ Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. #### (ICSC13719) #### Avoid giving alcohol. Avoid giving milk or oils - For advice, contact a Poisons Information Centre or a doctor at once. - Urgent hospital treatment is likely to be needed. #### Ingestion - ed do NOT induce vomiting - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink - Transport to hospital or doctor without delay. - If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. #### Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For acute or short-term repeated exposures to highly alkaline materials Issue Date: 18/01/2018 Print Date: 27/04/2018 Chemwatch: 9-94293 Page 4 of 18 Issue Date: 18/01/2018 Version No: 6.17 Print Date: 27/04/2018 #### Carbozinc 859EZ2 Part B - Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxygen is given as indicated. - $\blacksquare \ \ \, \text{The presence of shock suggests perforation and mandates an intravenous line and fluid administration.}$ - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure. INGESTION: Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. Supportive care involves the following: - Withhold oral feedings initially. - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). #### SKIN AND EYE: ▶ Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] Following acute or short term repeated exposures to toluene: - Toluene is absorbed across the alveolar barrier, the blood/air mixture being 11.2/15.6 (at 37 degrees C.) The concentration of toluene, in expired breath, is of the order of 18 ppm following sustained exposure to 100 ppm. The tissue/blood proportion is 1/3 except in adipose where the proportion is 8/10. - Metabolism by microsomal mono-oxygenation, results in the production of hippuric acid. This may be detected in the urine in amounts between 0.5 and 2.5 g/24 hr which represents, on average 0.8 gm/gm of creatinine. The biological half-life of hippuric acid is in the order of 1-2 hours. - Primary threat to life from ingestion and/or inhalation is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (eg cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 <50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial damage has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenaline) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. - Lavage is indicated in patients
who require decontamination; ensure use #### BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time Comments o-Cresol in urine 0.5 mg/L End of shift B Hippuric acid in urine 1.6 g/g creatinine End of shift B, NS Toluene in blood 0.05 mg/L Prior to last shift of workweek NS: Non-specific determinant; also observed after exposure to other material B: Background levels occur in specimens collected from subjects NOT exposed For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - Pulmonary absorption is rapid with about 60-65% retained at rest. - Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time Comments Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift eurymppu-nc acids in unite 1.5 gruym creatinine End of smit 2 mg/min Last 4 hrs of shift Depending on the degree of exposure, periodic medical examination is indicated. The symptoms of lung oedema often do not manifest until a few hours have passed and they are aggravated by physical effort. Rest and medical observation is therefore essential. Immediate administration of an appropriate spray, by a doctor or a person authorised by him/her should be considered. (ICSC24419/24421 #### **SECTION 5 FIREFIGHTING MEASURES** #### Extinguishing media - ► Foam. - Dry chemical powder. - BCF (where regulations permit) - Carbon dioxide. - Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters Fire Fighting ► Alert Fire Brigade and tell them location and nature of hazard. Chemwatch: 9-94293 Page **5** of **18** Issue Date: 18/01/2018 Version No: 6.17 Print Date: 27/04/2018 #### Carbozinc 859EZ2 Part B | | May be violently or explosively reactive. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Fight fire from a safe distance, with adequate cover. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | |-----------------------|--| | Fire/Explosion Hazard | Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: , carbon dioxide (CO2) , carbon monoxide (CO) , introgen oxides (NOx) , other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. | | HAZCHEM | *3WE | #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | | nammont and ordaning ap | |--------------|--| | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. | | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse vapour. Contain or absorb spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** ### Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. #### Contains low boiling substance: Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately. #### Safe handling - ► Check for bulging containers. - Vent periodically $\,\blacktriangleright\,$ Always release caps or seals slowly to ensure slow dissipation of vapours - ► Electrostatic discharge may be generated during pumping this may result in fire. - $\blacksquare \ \, \text{Ensure electrical continuity by bonding and grounding (earthing) all equipment.}$ Chemwatch: 9-94293 Issue Date: 18/01/2018 Page 6 of
18 Version No: 6.17 Print Date: 27/04/2018 Carbozinc 859EZ2 Part B ▶ Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then ≤ 7 m/sec). Avoid splash filling. ▶ Do NOT use compressed air for filling discharging or handling operations. Avoid all personal contact, including inhalation. Wear protective clothing when risk of overexposure occurs. ▶ Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked Avoid smoking, naked lights or ignition sources. Avoid generation of static electricity. DO NOT use plastic buckets ▶ Earth all lines and equipment. Use spark-free tools when handling. Avoid contact with incompatible materials. ► When handling, **DO NOT** eat, drink or smoke Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. ▶ Work clothes should be laundered separately. ▶ Use good occupational work practice. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. ▶ DO NOT allow clothing wet with material to stay in contact with skir Store in original containers in approved flammable liquid storage area. ▶ Store away from incompatible materials in a cool, dry, well-ventilated area. ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped. ▶ No smoking, naked lights, heat or ignition sources. Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access. For Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. ▶ Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers - dry chemical, foam or carbon dioxide) and flammable gas Other information detectors. Keep adsorbents for leaks and spills readily available. Protect containers against physical damage and check regularly for leaks. ► Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with - flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - Storage tanks should be above ground and diked to hold entire contents. #### Conditions for safe storage, including any incompatibilities - Packing as supplied by manufacturer - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) #### Suitable container - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - ▶ In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### Benzyl alcohol: - may froth in contact with water - ▶ slowly oxidises in air, oxygen forming benzaldehyde - is incompatible with mineral acids, caustics, aliphatic amines, isocvanates - reacts violently with strong oxidisers, and explosively with sulfuric acid at elevated temperatures - corrodes aluminium at high temperatures - is incompatible with aluminum, iron, steel - attacks some nonfluorinated plastics; may attack, extract and dissolve polypropylene Benzyl alcohol contaminated with 1.4% hydrogen bromide and 1.2% of dissolved iron(II) polymerises exothermically above 100 deg. C. #### Toluene: #### Storage incompatibility - reacts violently with strong oxidisers, bromine, bromine trifluoride, chlorine, hydrochloric acid/ sulfuric acid mixture, 1,3-dichloro-5,5-dimethyl-2,4-imidazolidindione, dinitrogen tetraoxide, fluorine, concentrated nitric acid, nitrogen dioxide, silver chloride, sulfur dichloride, uranium fluoride, vinyl acetate - forms explosive mixtures with strong acids, strong oxidisers, silver perchlorate, tetranitromethane - ▶ is incompatible with bis-toluenediazo oxide - attacks some plastics, rubber and coatings - may generate electrostatic charges, due to low conductivity, on flow or agitation. #### Xylenes: - ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride - attack some plastics, rubber and coatings - ▶ may generate electrostatic charges on flow or agitation due to low conductivity. - Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - Aromatics can react exothermically with bases and with diazo compounds. #### For alkyl aromatics: The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. # Page 7 of 18 Carbozinc 859EZ2 Part B Issue Date: **18/01/2018**Print Date: **27/04/2018** - Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. - ► Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides. - ► Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. - Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. - ▶ Microwave conditions give improved yields of the oxidation products. - Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. - ► Avoid contact with copper, aluminium and their alloys. Must not be stored together May be stored together with specific preventions — May be stored together #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### Control parameters #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|------------|-----------------------------|--------------------|---------------------|---------------|---------------| | Australia Exposure Standards | toluene | Toluene | 191 mg/m3 / 50 ppm | 574 mg/m3 / 150 ppm | Not Available | Not Available | | Australia Exposure Standards | xylene | Xylene (o-, m-, p- isomers) | 350 mg/m3 / 80 ppm | 655 mg/m3 / 150 ppm | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---|---|---------------|---------------|---------------| | benzyl alcohol | Benzyl alcohol | 30 ppm | 52 ppm | 740 ppm | | N-aminoethylpiperazine | Aminoethylpiperazine, N- | 6.4 mg/m3 | 71 mg/m3 | 420 mg/m3 | | 2,4,6-
tris[(dimethylamino)methyl]phenol | Tris(dimethylaminomethyl)phenol, 2,4,6- | 3.6 mg/m3 | 40 mg/m3 | 240 mg/m3 | | toluene | Toluene | Not Available | Not Available | Not Available | | xylene | Xylenes | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | formaldehyde/ benzenamine,
hydrogenated | Not Available | Not Available | | benzyl alcohol | Not Available | Not Available | | N-aminoethylpiperazine | Not Available | Not Available | | 4,4'-methylenebis(cyclohexylamine) | Not Available | Not Available | | 2,4,6-
tris[(dimethylamino)methyl]phenol | Not Available | Not Available | | toluene | 500 ppm | Not Available | | xylene | 900 ppm | Not Available | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in
protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. ## Appropriate engineering controls For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |--|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | Chemwatch: 9-94293 Page 8 of 18 Version No: 6.17 #### Carbozinc 859EZ2 Part B aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) 1-2.5 m/s (200-500 f/min.) Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the ## Eye and face protection #### Chemical goggles. - Full face shield may be required for supplementary but never for primary protection of eyes. - class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands ## Skin protection #### See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be wom on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and - dexterity #### Hands/feet protection ### Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. #### **Body protection** #### See Other protection below #### Overalls. ► PVC Apron. Evewash unit. ▶ PVC protective suit may be required if exposure severe. ### Other protection - ► Ensure there is ready access to a safety shower - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Issue Date: 18/01/2018 Print Date: 27/04/2018 Issue Date: **18/01/2018**Print Date: **27/04/2018** Print Date: **27/04/2018** Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Carbozinc 859EZ2 Part B | Material | СРІ | |-------------------|-----| | BUTYL | С | | BUTYL/NEOPRENE | С | | CPE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | SARANEX-23 | С | | SARANEX-23 2-PLY | С | | TEFLON | С | | VITON | С | | VITON/CHLOROBUTYL | С | | VITON/NEOPRENE | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours
continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - *Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type K-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|----------------------------| | up to 5 x ES | K-AUS / Class 1
P2 | - | K-PAPR-AUS /
Class 1 P2 | | up to 25 x ES | Air-line* | K-2 P2 | K-PAPR-2 P2 | | up to 50 x ES | - | K-3 P2 | - | | 50+ x ES | - | Air-line** | - | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. 76ak-p() #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | amber liquid with Characteristic Odour | | | |--|--|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 0.93 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 487 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 1.08 | | Initial boiling point and boiling range (°C) | 143 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 34 | Taste | Not Available | | Evaporation rate | 1.2 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 7.6 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 0.9 | Volatile Component (%vol) | 69 | | Vapour pressure (kPa) | 1.1 | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | Carbozinc 859EZ2 Part B Issue Date: **18/01/2018**Print Date: **27/04/2018** Vapour density (Air = 1) 3.9 VOC g/L 669.78 #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. Inhalation of epoxy resin amine hardeners (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting several days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". When inhaled, polystyrene is virtually non-toxic. High concentrations of dust may cause temporary irritation and cough. Fumes from hot wire cutting the material may irritate the nose and eyes. #### Inhaled Inhalation hazard is increased at higher temperatures. Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary orderna On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction red blood cells and bleeding abnormalities. There may also be drowsiness. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Inhalation of benzyl alcohol may affect breathing (causing depression and paralysis of breathing and lower blood pressure. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant ### Ingestion Swallowing large doses of benzyl alcohol may cause abdominal pain, nausea, vomiting and diarrhea. It may affect behaviour and/or the central nervous system, and cause headache, sleepiness, excitement, dizziness, inco-ordination, coma, convulsions and other symptoms of central nervous system depression. to newborns, exposure to excessive amounts of benzyl alcohol has been associated with toxicity (low blood pressure and metabolic acidosis), and an increased incidence of severe jaundice leading to nervous system symptoms called kemicterus. Rarely, death may occur. Benzyl alcohol in medications is present in much smaller amounts than in flush solutions. The amount of benzyl alcohol sufficient to cause toxicity is unknown. If the patient requires more than the recommended dose or other medications containing this preservative, the prescribing doctor must consider the daily metabolic load of benzyl alcohol from these combined sources. The material can produce chemical burns following direct contact with the skin. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. **Skin Contact** Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. #### Eye The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage. The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Comeal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated. ## Chronic Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Prolonged or repeated exposure to benzyl alcohol may cause allergic contact dermattis (skin inflammation). Prolonged or repeated swallowing may affect behaviour and the central nervous system with symptoms similar to acute swallowing. It may also affect the liver, kidneys, cardiovascular system, the lungs and cause weight loss. Studies in animals have shown evidence of causing birth defects, but the significance of this information in humans is unknown. Benzyl alcohol has not been shown to cause cancer. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. Inhalation of epoxy resin amine hardeners
(including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting several days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". Sensitisation may give severe responses to very low levels of exposure, i.e. hypersensitivity. | Carbozinc 859EZ2 Part B | TOXICITY Not Available | IRRITATION Not Available | |--|-------------------------|---------------------------| | formaldehyde/ benzenamine,
hydrogenated | TOXICITY Not Available | IRRITATION Not Available | Chemwatch: 9-94293 Version No: 6.17 # Page 11 of 18 Carbozinc 859EZ2 Part B Issue Date: **18/01/2018**Print Date: **27/04/2018** | | TOXICITY | IRRITATION | |------------------------------------|---|--| | | Dermal (rabbit) LD50: 2000 mg/kg ^[2] | Eye (rabbit): 0.75 mg open SEVERE | | benzyl alcohol | Inhalation (rat) LC50: >4.178 mg/l/4h ^[2] | Skin (man): 16 mg/48h-mild | | | Oral (rat) LD50: 1230 mg/kg ^[2] | Skin (rabbit):10 mg/24h open-mild | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 880 mg/kg ^[2] | Eye (rabbit): 20 mg/24h - mod | | N-aminoethylpiperazine | Oral (rat) LD50: 2410 mg/kg ^[2] | Skin (rabbit): 0.1 mg/24h - mild | | | | Skin (rabbit): 5 mg/24h - SEVERE | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >1000 mg/kg ^[1] | Eye (rabbit): 10uL./24h SEVERE | | 4,4'-methylenebis(cyclohexylamine) | Inhalation (mouse) LC50: 0.4 mg/l/4H ^[2] | Skin (rabbit): SEVERE Corrosive ** | | | Oral (rat) LD50: 350 mg/kg ^[1] | | | | TOXICITY | IRRITATION | | 2,4.6- | dermal (rat) LD50: 1280 mg/kg ^[2] | Eye (rabbit): 0.05 mg/24h - SEVERE | | tris[(dimethylamino)methyl]phenol | Inhalation (rat) LC50: >0.125 mg/l/1hr.] ^[2] | Skin (rabbit): 2 mg/24h - SEVERE | | | Oral (rat) LD50: 1200 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 12124 mg/kg ^[2] | Eye (rabbit): 2mg/24h - SEVERE | | toluene | Inhalation (rat) LC50: 49 mg/l/4H ^[2] | Eye (rabbit):0.87 mg - mild | | toluene | Oral (rat) LD50: 636 mg/kg ^[2] | Eye (rabbit):100 mg/30sec - mild | | | | Skin (rabbit):20 mg/24h-moderate | | | | Skin (rabbit):500 mg - moderate | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (human): 200 ppm irritant | | xylene | Inhalation (rat) LC50: 4994.295 mg/l/4h ^[2] | Eye (rabbit): 5 mg/24h SEVERE | | | Oral (rat) LD50: 4300 mg/kg ^[2] | Eye (rabbit): 87 mg mild | | | | Skin (rabbit):500 mg/24h moderate | | | Value abbeired from France FOLIA Parietaned Orbetones | And the initial Only laborate in a facine of force and a COC Union when the control of contr | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances #### FORMALDEHYDE/ BENZENAMINE, HYDROGENATED Amine adducts have much reduced volatility and are less irritating to the skin and eyes than amine hardeners. However commercial amine adducts may contain a percentage of unreacted amine and all unnecessary contact should be avoided. Amine adducts are prepared by reacting excess primary amines with epoxy resin. Amine adducts are prepared by reacting excess primary amines with epoxy re No significant acute toxicological data identified in literature search. Lipling honzylia alaahala tha bata budrayyil arayya of tha mambara a Unlike benzylic alcohols, the beta-hydroxyl group of the members of benzyl alkyl alcohols contributes to break down reactions but do not undergo phase II metabolic activation. Though structurally similar to cancer causing ethyl benzene, phenethyl alcohol is only of negligible concern due to limited similarity in their pattern of activity. For benzoates: Benzyl alcohol, benzoic acid and its sodium and potassium salt have a common metabolic and excretion pathway. All but benzyl alcohol are considered to be unhamful and of low acute toxicity. They may cause slight irritation by oral, dermal or inhalation exposure except sodium benzoate which doesn't irritate the skin. Studies showed increased mortality, reduced weight gain, liver and kidney effects at higher doses, also, lesions of the brains, thymus and skeletal muscles may occur with benzyl alcohol. However, they do not cause cancer, genetic or reproductive toxicity. Developmental toxicity may occur but only at maternal toxic level. Adverse reactions to fragrances in perfumes and fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, sensitivity to light, immediate contact reactions, and pigmented contact dermatitis. Airborne and connubial contact dermatitis occurs. Contact allergy is a lifelong condition, so symptoms may occur on re-exposure. Allergic contact dermatitis can be severe and widespread, with significant impairment of quality of life and potential consequences for fitness for work. #### BENZYL ALCOHOL If the perfume contains a sensitizing component, intolerance to perfumes by inhalation may occur. Symptoms may include general unwellness, coughing, phlegm, wheezing, chest tightness, headache, shortness of breath with exertion, acute respiratory illness, hayfever, asthma and other respiratory diseases. Perfumes can induce excess reactivity of the airway without producing allergy or airway obstruction. Breathing through a carbon filter mask had no protective effect. Occupational asthma caused by perfume substances, such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms, even though the exposure is below occupational exposure limits. Prevention of contact sensitization to fragrances is an important objective of public health risk management. Hands: Contact sensitization may be the primary cause of hand eczema or a complication of irritant or atopic hand eczema. However hand eczema is a disease involving many factors, and the clinical significance of fragrance contact allergy in severe, chronic hand eczema may not be clear. Underarm: Skin inflammation of the armpits may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a skin specialist, a history of such first-time symptoms was significantly related to the later diagnosis of partitions allergy. Face: An important manifestation of fragrance allergy from the use of cosmetic products is eczema of the face. In men, after-shave products can cause eczema around the beard area and the adjacent part of the neck. Men using wet shaving as opposed to dry have been shown to have an increased risk of allergic to fragrances. Chemwatch: 9-94293 Page 12 of 18 Issue Date: 18/01/2018 Version No: 6.17 Print Date: 27/04/2018 #### Carbozinc 859EZ2 Part B Irritant reactions: Some individual fragrance ingredients, such as citral, are known to be irritant. Fragrances may cause a dose-related contact urticaria (hives) which is not allergic; cinnamal, cinnamic alcohol and Myroxylon pereirae are known to cause hives, but others, including menthol, vanillin and benzaldehyde have also been reported. Pigmentary anomalies: Type IV allergy is responsible for "pigmented cosmetic dermatitis", referring to increased pigmentation on the face and neck. Testing showed a number of fragrance ingredients were associated, including jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol and geranium oil, Light reactions: Musk ambrette produced a number of allergic reactions mediated by light and was later banned from use in Europe. Furocoumarins (psoralens) in some plant-derived fragrances have caused phototoxic reactions, with redness. There are now limits for the amount of furocoumarins in fragrances. Phototoxic reactions still occur,
but are rare. General/respiratory: Fragrances are volatile, and therefore, in addition to skin exposure, a perfume also exposes the eyes and the nose / airway. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. A significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients and hand eczema. Fragrance allergens act as haptens, low molecular weight chemicals that cause an immune response only when attached to a carrier protein. However, not all sensitizing fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself causes little or no sensitization, but is transformed into a hapten in the skin (bioactivation), usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or a prohapten, or both. Prohaptens: Compounds that are bioactivated in the skin and thereby form haptens are referred to prohaptens. The possibility of a prohapten being activated cannot be avoided by outside measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Various enzymes play roles in both activating and deactivating prohaptens. Skin-sensitizing prohaptens can be recognized and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or studies of sensitization. QSAR prediction: Prediction of sensitization activity of these substances is complex, especially for those substances that can act both as pre- and prohaptens. This is a member or analogue of a group of benzyl derivatives generally regarded as safe (GRAS), based partly on their self-limiting properties as flavouring substances in food. In humans and other animals, they are rapidly absorbed, broken down and excreted, with a wide safety margin. They also lack significant potential to cause genetic toxicity and mutations. The intake of benzyl derivatives as natural components of traditional foods is actually higher than the intake as intentionally added flavouring substances. The aryl alkyl alcohol (AAA) fragrance ingredients have diverse chemical structures, with similar metabolic and toxicity profiles. The AAA fragrances demonstrate low acute and subchronic toxicity by skin contact and swallowing. At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin. The potential for eye irritation is minimal. With the exception of benzyl alcohol, phenethyl and 2-phenoxyethyl AAA alcohols, testing in humans indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitization is low. Testing suggests that at current human exposure levels, this group of chemicals does not cause maternal or developmental toxicity. Animal testing shows no cancer-causing evidence, with little or no genetic toxicity. It has been concluded that these materials would not present a safety concern at current levels of use, as fragrance ingredients. Ethyleneamines are very reactive and can cause chemical burns, skin rashes and asthma-like symptoms. It is readily absorbed through the skin and may cause eye blindness and irreparable damage. As such, they require careful handling. In general, the low-molecular weight polyamines have been positive in the Ames assay (for genetic damage); however, this is probably due to their ability to chelate copper. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration. for piperazine: Exposure to piperazine and its salts has clearly been demonstrated to cause asthma in occupational settings. No NOAEL can be estimated for respiratory sensitisation (asthma). Although the LD50 levels indicate a relatively low level of oral acute toxicity (LD50 1-5 a/kg bw), signs of neurotoxicity may appear in humans after exposure to lower doses. Based on exposure levels of up to 3.4 mg/kg/day piperazine base and a LOAEL of 110 mg/kg, there is no concern for acute toxicity In pigs, piperazine is readily absorbed from the gastrointestinal tract, and the major part of the resorbed compound is excreted as unchanged piperazine during the first 48 hours. The principal route of excretion of piperazine and its metabolites is via urine, with a minor fraction recovered from faeces (16%). In humans the kinetics of the uptake and excretion of piperazine and its metabolites with urine appear to be roughly similar to that in the pig, and the nature and extent of conversion to metabolites has not been determined. Piperazine has demonstrated a low acute toxicity (LD50 = 1-5 g/kg bw) by the oral, dermal, and subcutaneous route of administration to rodents, whereas adequate inhalation toxicity data have not been found. However, there are findings of EEG (electroencephalogram) changes in 37% of 89 children administrated 90-130 mg/kg piperazine (two doses during one day), corroborated by a proposed GABA (gamma-aminobutyric acid) receptor agonism exerted by piperazine. Since clinical symptoms of neurotoxicity may occur after exposure to higher doses, a LOAEL of 110 mg/kg piperazine base for acute neurotoxicity in humans after acute exposure is proposed. Piperazine, as concentrated aqueous solution, has strongly irritating properties with regard to skin, and should be regarded as corrosive with respect to the eye. Exposure to piperazine and it salts has been demonstrated to cause allergic dermatitis as well as respiratory sensitisation in humans. As shown by the LLNA, piperazine has a sensitising potential in animals. Although piperazine is clearly sensitising, no NOAEL can be set for this effect from the present database. A NOAEL of 25 mg/kg/day of piperazine for liver toxicity in the beagle dog has been chosen after repeated exposure. A LOAEL of 30 mg/kg/day of piperazine for neurotoxicity is proposed based on documentation of (rare cases) of neurotoxicity from human clinical practice. Neurotoxicity also appears in other species (e.g., rabbits, dogs, cats, tigers, and horses), but not in rodents. For reproductive effects of piperazine, there is a NOAEL of 125 mg/kg/day for effects on fertility, i.e., reduced pregnancy index, decreased number of implantation sites, and decreased litter sizes in rats. The teratogenic properties have been investigated in rats and rabbits in adequate studies. In rabbit, such effects may be elicited at a dose level that is also toxic to the dam. The LOAEL is 94 mg/kg/day, and the NOAEL 42 mg/kg/day piperazine base (maternal and embryotoxic). In the rat study, there were decreases in body weight of both dams and offspring at the top dose (2,100 mg/kg/day piperazine base), but there were no signs of any malformations. The genotoxic properties have been investigated both in vitro (in the Ames test, in a nonstandard study on Saccharomyces cervisiae and in Chinese hamster ovary cells) and in vivo, in a micronuclei assay on mice, all with negative results. There are no solid indications of a carcinogenic effect of piperazine, neither in animal studies, nor from the investigation on humans. In view of lack of genotoxic action, it appears unlikely that piperazine poses a There seems to be an additional cancer risk due to the formation of N-mononitrosopiperazine (NPZ) from piperazine. It is possible to calculate a hypothetical additional cancer risk posed by NPZ after exposure to piperazine, but the calculation would depend on several assumptions. We conclude that there seems to be an additional cancer risk due to the formation of NPZ from piperazine, and although it is difficult to estimate, it is probably small. Acute toxicity: Humans exposed to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis (sleepiness) and death. When inhaled or swallowed, toluene can cause severe central nervous system depression, and in large doses has a narcotic effect. 60mL has caused death. Death of heart muscle fibres, liver swelling, congestion and bleeding of the lungs and kidney injury were all found on autopsy. Exposure to inhalation at a concentration of 600 parts per million for 8 hours resulted in the same and more serious symptoms including euphoria (a feeling of well-being), dilated pupils, convulsions and nausea. Exposure to 10000-30000 parts per million (1-3%) has been reported to cause narcosis and death. Toluene can also strip the skin of lipids, causing skin inflammation. Subchronic/chronic effects: Repeat doses of toluene cause adverse central nervous system effects and can damage the upper airway, the liver and the kidney. Adverse effects occur from both swallowing and inhalation. In humans, a reported lowest level causing adverse effects on the nervous system is 88 parts per million. In one case, toluene caused heart sensitization and death. In several cases of "glue sniffing", damage to the cerebellum was noted. Workers chronically exposed to toluene fumes have reported reduced white cell counts. Developmental/Reproductive toxicity: Exposure to high levels of toluene can result in adverse effects in the developing foetus. Several studies have indicated #### N-AMINOETHYLPIPERAZINE # TOLUENE # Page 13 of 18 Carbozinc 859EZ2 Part B Issue Date: **18/01/2018**Print Date: **27/04/2018** that high levels of toluene can also
adversely affect the developing offspring in laboratory animals. In children who were exposed to toluene before birth, as a result of solvent abuse by the mother, variable growth, a small head, central nervous system dysfunction, attention deficits, minor facial and limb abnormalities, and developmental delay were seen. Absorption: Studies in humans and animals have shown that toluene is easily absorbed through the lungs and gastrointestinal tract, with much less being absorbed through the skin. Distribution: Animal studies show that toluene may be distributed in the body fat, bone marrow, spinal nerves, spinal cord and brain white matter, with lower levels in the blood, kidney and liver. Toluene has generally been found to accumulate in fatty tissue, and in highly vascularised tissues. Metabolism: Inhaled or ingested toluene may be metabolized to benzyl alcohol, after which it is further oxidized to benzaldehyde and benzoic acid. Benzoic acid is sometimes conjugated with glycine to form hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. O-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites. Excretion: Toluene is mainly (60-70%) excreted through the urine as hippuric acid. Benzoyl glucuronide accounts for 10-20% of excretion, and unchanged toluene through exhaled air also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours of exposure. #### FORMALDEHYDE/ BENZENAMINE, HYDROGENATED & N-AMINOETHYLPIPERAZINE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. # BENZYL ALCOHOL & N-AMINOETHYLPIPERAZINE The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. # BENZYL ALCOHOL & TOLUENE The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. | Acute Toxicity | ✓ | Carcinogenicity | ✓ | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | ~ | | Mutagenicity | 0 | Aspiration Hazard | ✓ | Legend: X – Data available but does not fill the criteria for classification → Data available to make classification O - Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### Toxicity | Carbozinc 859EZ2 Part B | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |---|------------------|--------------------|-------------------------------|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | formaldehyde/ benzenamine,
hydrogenated | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | benzyl alcohol | LC50 | 96 | Fish | 10mg/L | 4 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | N-aminoethylpiperazine | LC50 | 96 | Fish | 2190mg/L | 4 | | | EC50 | 48 | Crustacea | =32mg/L | 1 | | | EC50 | 72 | Algae or other aquatic plants | =495mg/L | 1 | | | NOEC | 48 | Crustacea | =18mg/L | 1 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | 4,4'-methylenebis(cyclohexylamine) | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | 242 | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | 2,4,6-
tris[(dimethylamino)methyl]phenol | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 0.0073mg/L | 4 | | toluene | EC50 | 48 | Crustacea | 3.78mg/L | 5 | | | EC50 | 72 | Algae or other aquatic plants | 12.5mg/L | 4 | #### Carbozinc 859EZ2 Part B | | BCF | 24 | Algae or other aquatic plants | 10mg/L | 4 | |--------|----------|--------------------|-------------------------------|----------|--------| | | NOEC | 168 | Crustacea | 0.74mg/L | 5 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 2.6mg/L | 2 | | xylene | EC50 | 48 | Crustacea | >3.4mg/L | 2 | | | EC50 | 72 | Algae or other aquatic plants | 4.6mg/L | 2 | | | NOEC | 73 | Algae or other aquatic plants | 0.44mg/L | 2 | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the wate Oils of any kind can cause: - rowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility - ▶ lethal effects on fish by coating gill surfaces, preventing respiration - ▶ asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and - ▶ adverse aesthetic effects of fouled shoreline and beaches For 1,2,4 - Trimethylbenzene: Half-life (hr) air: 0.48-16; Half-life (hr) H2O surface water: 0.24 -672; Half-life (hr) H2O ground: 336-1344; Half-life (hr) soil: 168-672; Henry's Pa m3 /mol: 385 -627; Bioaccumulation: not significant. 1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance. Atmospheric Fate: 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs. Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life 8820 days). Aquatic Fate: 1,2,4-Trimethylbenzene volatilizes rapidly from surface waters with volatilization half-life from a model river calculated to be 3.4 hours. Biodegradation of 1,2,4-trimethylbenzene has been noted in both seawater and ground water. Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene. Terrestrial Fate: 1,2,4-Trimethylbenzene also volatilizes from soils however; moderate adsorption to soils and sediments may occur. Volatilization is the major route of removal of 1,2,4-trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations. Ecotoxicity: No significant bioaccumulation has been noted. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene has moderate acute toxicity to aquatic organisms. No stress was observed in rainbow trout, sea lamprey and Daphnia magna water fleas. The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment. For Aromatic Substances Series: Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment
longer than smaller PAHs. Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthroene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For Xylenes: $log\ Koc: 2.05-3.08;\ Koc: 25.4-204;\ Half-life\ (hr)\ air: 0.24-42;\ Half-life\ (hr)\ H2O\ surface\ water: 24-672;\ Half-life\ (hr)\ H2O\ ground: 336-8640;\ Half-life\ (hr)\ soil: 52-672;\ Henry's\ Pa\ m3\ /mol: 637-879;\ Henry's\ atm\ m3\ /mol - 7.68E-03;\ BOD\ 5\ if\ unstated\ - 1.4,1%;\ COD\ - 2.56,13%\ ThOD\ - 3.125:\ BCF: 23;\ log\ BCF: 1.17-2.41.$ Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years. Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photocxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, e.6-dimethylphenol, and 4-nitro-2,6-dimethylphenol. Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-xylene is biodegradable and has been observed to degrade in pond water however, it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L. For benzyl alcohol: $\log \text{Kow}: 1.1 \text{Koc}: <5 \text{Henry's atm m3/mol}: 3.91 \text{E}-07 \text{BOD} 5: 1.55-1.6, 33-62\% \text{COD}: 96\% \text{ThOD}: 2.519 \text{BCF}: 4.00 \text{Feb.}$ Bioaccumulation: Not significant Anaerobic Effects: Significant degradation. Effects on algae and plankton: Inhibits degradation of glucose Degradation Biological: Significant processes Abiotic: RxnOH*,no photochem Ecotoxicity: Fish LC50 (48 h): fathead minnow 770 mg/l; (72 h): 480 mg/l; (96 h) 460 mg/l. Fish LC50 (96 h) fathead minnow 10 ppm, bluegill sunfish 15 ppm; tidewater silverside fish 15 ppm. Products of Biodegradation: Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise, but these are less toxic than the product itself. For Toluene: log Kow: 2.1-3; log Koc: 1.12-2.85; Koc: 37-260; log Kom: 1.39-2.89; Half-life (hr) air: 2.4-104; Half-life (hr) H2O surface water: 5.55-528; Half-life (hr) H2O ground: 168-2628; Carbozinc 859EZ2 Part B Issue Date: 18/01/2018 Print Date: 27/04/2018 Half-life (hr) soil: <48-240: Henry's Pa m3 /mol: 518-694; Henry's atm m3 /mol: 5.94; E-03BOD 5 0.86-2.12, 5%COD - 0.7-2.52,21-27%; ThOD - 3.13 : BCF - 1.67-380: log BCF - 0.22-3.28. Atmospheric Fate: The majority of toluene evaporates to the atmosphere from the water and soil. The main degradation pathway for toluene in the atmosphere is reaction with photochemically produced hydroxyl radicals. The estimated atmospheric half life for toluene is about 13 hours. Toluene is also oxidized by reactions with atmospheric nitrogen dioxide, oxygen, and ozone, but these are minor degradation pathways. Photolysis is not considered a significant degradative pathway for toluene. Terrestrial Fate: Toluene is moderately retarded by adsorption to soils rich in organic material, therefore, transport to ground water is dependent on soil composition. In unsaturated topsoil containing organic material, it has been estimated that 97% of the toluene is adsorbed to the soil and only about 2% is in the soil-water phase and transported with flowing groundwater. There is little retardation in sandy soils and 2-13% of the toluene was estimated to migrate with flowing water; the remainder was volatilized, biodegraded, or unaccounted for. In saturated deep soils with no soil-air phase, about 48% may be transported with flowing groundwater. In surface soil, volatilization to air is an important fate process for toluene. In the environment, biodegradation of toluene to carbon dioxide occurs with a typical half life of 1-7 days. Aquatic Fate: An important fate process for toluene is volatilization, the rate of which depends on the amount of turbulence in the surface water. The volatilization of toluene from static water has a half life of 1-16 days, whereas from turbulent water the half life is 5-6 hours. Degradation of toluene in surface water occurs primarily by biodegradation with a half life of less than one day under favorable conditions (presence of microorganisms, microbial adaptation, and optimum temperature). Biodegradation also occurs in shallow groundwater and in salt water (at a reduced rate). No data are available on anaerobic degradation of toluene in deep ground water conditions where aerobic degradation would be minimal. Ecotoxicity: Bioaccumulation in the food chain is predicted to be low. Toluene has moderate acute toxicity to aquatic organisms. Toluene is, on the average, slightly toxic to fathead minnow, guppies and goldfish and not acutely toxic to bluegill or channel catfish and crab. Toluene, on the average, is slightly toxic to crustaceans specifically, shrimp species including grass shrimp and daggerblade grass shrimp. Toluene has a negative effect on green algae during their growth phase. **DO NOT** discharge into sewer or waterways #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|-----------------------------|-----------------------------| | benzyl alcohol | LOW | LOW | | N-aminoethylpiperazine | HIGH | HIGH | | 4,4'-methylenebis(cyclohexylamine) | HIGH | HIGH | | 2,4,6-
tris[(dimethylamino)methyl]phenol | HIGH | HIGH | | toluene | LOW (Half-life = 28 days) | LOW (Half-life = 4.33 days) | | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |---|------------------------| | benzyl alcohol | LOW (LogKOW = 1.1) | | N-aminoethylpiperazine | LOW (LogKOW = -1.5677) | | 4,4'-methylenebis(cyclohexylamine) | LOW (LogKOW = 3.2649) | | 2,4,6-
tris[(dimethylamino)methyl]phenol | LOW (LogKOW = 0.773) | | toluene | LOW (BCF = 90) | | xylene | MEDIUM (BCF = 740) | #### Mobility in soil | Ingredient | Mobility | |---|-------------------| | benzyl alcohol | LOW (KOC = 15.66) | | N-aminoethylpiperazine | LOW (KOC = 171.7) | | 4,4'-methylenebis(cyclohexylamine) | LOW (KOC = 672.4) | | 2,4,6-
tris[(dimethylamino)methyl]phenol | LOW (KOC = 15130) | | toluene | LOW (KOC = 268) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods - ► Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Product / Packaging disposal - ▶ Reduction ▶ Reuse - Recycling - Disposal (if all else
fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. ► DO NOT allow wash water from cleaning or process equipment to enter drains #### Issue Date: 18/01/2018 Print Date: 27/04/2018 Carbozinc 859EZ2 Part B - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ► Recycle wherever possible. - ► Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ▶ Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** #### **Labels Required** #### Marine Pollutant HAZCHEM •3WE #### Land transport (ADG) | UN number | 3469 | | |------------------------------|--|--| | UN proper shipping name | PAINT, FLAMMABLE, CORROSIVE (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL, FLAMMABLE, CORROSIVE (including paint thinning or reducing compound) | | | Transport hazard class(es) | Class 3
Subrisk 8 | | | Packing group | Ш | | | Environmental hazard | Environmentally hazardous | | | Special precautions for user | Special provisions 163 367 Limited quantity 1 L | | #### Air transport (ICAO-IATA / DGR) | UN number | 3469 | | | | |------------------------------|--|---------------|------------------|--| | UN proper shipping name | Paint, flammable, corrosive (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material, flammable, corrosive (including paint thinning or reducing compound) | | | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | 3
8
3CH | | | | Packing group | П | | | | | Environmental hazard | Environmentally hazardous | | | | | Special precautions for user | Special provisions | | A3 A72 A192 A803 | | | | Cargo Only Packing Instructions | | 363 | | | | Cargo Only Maximum Qty / Pack | | 5L | | | | Passenger and Cargo Packing Instructions | | 352 | | | | Passenger and Cargo Maximum Qty / Pack | | 1 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y340 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 0.5 L | | #### Sea transport (IMDG-Code / GGVSee) | UN number | 3469 | | |----------------------------|--|--| | UN proper shipping name | PAINT, FLAMMABLE, CORROSIVE (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL, FLAMMABLE, CORROSIVE (including paint thinning or reducing compound) | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk 8 | | | Packing group | Ш | | | Environmental hazard | Marine Pollutant | | #### Carbozinc 859EZ2 Part B Issue Date: **18/01/2018**Print Date: **27/04/2018** Special precautions for user | EMS Number | F-E , S-C | |--------------------|-----------| | Special provisions | 163 367 | | Limited Quantities | 1 L | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### FORMALDEHYDE/ BENZENAMINE, HYDROGENATED(135108-88-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) #### BENZYL ALCOHOL(100-51-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) #### N-AMINOETHYLPIPERAZINE(140-31-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C #### 4,4'-METHYLENEBIS(CYCLOHEXYLAMINE)(1761-71-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) #### 2,4,6-TRIS[(DIMETHYLAMINO)METHYL]PHENOL(90-72-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) #### TOLUENE(108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Part 2, Section Seven - Appendix I Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7 International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs #### XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Part 2, Section Seven - Appendix I Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$ Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\label{thm:constraints} \textbf{Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Scheduled Standard For the Uniform Scheduling of Medicines and Poisons (SUSMP) - Scheduled Standard For the Uniform Scheduling of Medicines and Poisons (SUSMP) - Scheduling Scheduling Standard For the Uniform Scheduling S$ International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs | National Inventory | Status | | |-------------------------------|---|--| | Australia - AICS | Υ | | | Canada - DSL | Υ | | | Canada - NDSL | N (benzyl alcohol; toluene; N-aminoethylpiperazine; xylene; 2,4,6-tris[(dimethylamino)methyl]phenol; formaldehyde/ benzenamine, hydrogenated; 4,4'-methylenebis(cyclohexylamine)) | | | China - IECSC | Υ | | | Europe - EINEC / ELINCS / NLP | N (formaldehyde/ benzenamine, hydrogenated) | | | Japan - ENCS | N (formaldehyde/ benzenamine, hydrogenated) | | | Korea - KECI | Υ | | | New Zealand - NZIoC | Υ | | | Philippines - PICCS | Υ | | | USA - TSCA | Υ | | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | #### **SECTION 16 OTHER INFORMATION** | Revision Date | 18/01/2018 | |---------------|------------| | Initial Date | 18/01/2018 | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using Chemwatch: 9-94293 Page 18 of 18 Issue Date: 18/01/2018 Version No: 6.17 Print Date: 27/04/2018 #### Carbozinc 859EZ2 Part B available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC – TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure
Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch.